
Electronic Preprint for Journal of Information Processing Vol.30

Regular Paper

The TABLET Programming Learning Environment:
from Block-based to Text-based Programming

TakumiMiyajima1,†1,a) Hideya Iwasaki1,†2,b) Yasushi Kuno1,c)

Received: February 10, 2022, Accepted: May 18, 2022

Abstract: From 2020, programming is a compulsory subject in elementary schools in Japan. Since many schools are
using block-based programming languages and environments as teaching materials, the number of students who have
already learned block-based programming is expected to increase. To help such learners of block-based programming
shift to text-based programming languages, we have designed and implemented a programming learning environment
named TABLET. We have designed TABLET as a syntax-directed system that focuses on making the learner aware of
the syntax of the target text-based language. To this end, TABLET incorporates two programming behaviors: deriving
blocks for non-terminal symbols of the target language and writing program code directly with text. TABLET synchro-
nizes these two behaviors to make it easier for the learner to grasp the correspondence between block-based programs
and text-based programs. TABLET can be used for many target text-based languages as long as the syntax can be
given as a set of Backus-Naur Form (BNF) rules. Thus, TABLET is general enough to capably generating blocks for
the language and to enable the both programming behaviors. We conducted evaluation experiments with second-year
undergraduate students. We found that TABLET made it easier for the students to grasp the correspondence between
the block-based and text-basd programs and to understand the syntax of the target language.

Keywords: Text-Based Languages, Block-Based Languages, Syntax-Directed Systems, Structural Editors, Program-
ming Environments

1. Introduction

Programming languages can be classified into two main types:
text-based languages and visual languages. A program in a text-
based language is created as a sequence of characters that obeys
its syntax. Most programming languages, such as C and Java,
are text-based languages. In contrast, visual languages use vi-
sual components such as blocks and pictures, and combine them
with screen operations to create programs. Scratch [1], [2], [3],
Blockly [4], [5], Viscuit [6], [7], [8] are examples of visual lan-
guages. Among visual languages, this paper focuses on those that
use blocks. Hereafter, in addition to such languages, languages in
which programs are created by structural editors that use blocks
so as to make the programs follow the syntactic structures are
referred to as block-based languages.

From 2020, programming is a compulsory subject in elemen-
tary schools in Japan *1. In this context, block-based languages,
which are easy to understand visually and intuitively, are con-
sidered to be suitable for elementary school students, and many
elementary schools are introducing them. In fact, the Ministry of
Education, Culture, Sports, Science and Technology in Japan uses
block-based language in practical examples such as “drawing reg-

1 Graduate School of Informatics and Engineering, The University of
Electro-Communications, Chofu, Tokyo 182–8585, Japan

†1 Presently with PCI Solutions INC.
†2 Presently with School of Science and Technology, Meiji University
a) kumikumi.core5@gmail.com
b) hideya.iwasaki@acm.org
c) y-kuno@uec.ac.jp

ular polygons” and “tools using the properties and functions of
electricity” *2 ,*3. It is thus expected that the number of students
who have already learned block-based languages will increase in
the near future.

However, programming languages commonly used in practical
program development today are text-based languages, which are
more descriptive than block-based languages because program
code is written using keyboard inputs rather than mouse opera-
tions. Thus, to perform practical programming in the future, pro-
gramming beginners, who have learned the basic programming
in block-based languages, are required to shift to text-based lan-
guages equipped with superior descriptive power. Here, to “shift”
means to become able to make programs in a text-based language
by inputting text from the keyboard and fully understand and be
aware of the syntax of the language. However, there is high bur-
den to shift because large differences exist between block-based
and text-basd languages. We hypothesize that this burden is due
in large part to the change from programming that does not re-
quire awareness of language syntax to programming that does.

To solve the aforementioned problems and to support a smooth
shift from block-based languages to text-based languages, we
design and implement TABLET (Text And Block programming
Learning EnvironmenT). TABLET is intended for the learner who

*1 https://www.mext.go.jp/content/20200218-mxt jogai02-100003171
002.pdf (in Japanese) (accessed 2022-05-31).

*2 https://www.mext.go.jp/component/a menu/education/micro detail/
icsFiles/afieldfile/2019/05/21/1416331 001.pdf (in Japanese)

(accessed 2022-05-31).
*3 https://miraino-manabi.mext.go.jp/ (in Japanese) (accessed 2022-05-31).

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

has already learned some block-based language but is in the early
stage of learning a text-based language. The complexity of the
syntax of a text-based language varies from language to language;
we assume simple languages.

TABLET aims to lower the hurdles due to the following two
changes that occur with the shift:
• a change from programming without awareness of the gram-

mar of the language to programming with awareness of the
grammar, and

• a change from mouse operations to text input operations.
To this end, we set the following three goals of TABLET:
• making the learner be aware of the syntax of the target text-

based language,
• making it easier to understand the correspondences between

blocks and texts, and
• reducing the hurdle of keyboard input.
To achieve these goals, TABLET uses the following two syn-

chronous basic operations for constructing a program in the tar-
get text-based language: block-combining operations using the
mouse and text-inputting operations using the keyboard. This
makes it easy to understand the correspondences between blocks
and texts, aiming at both the integration of the two and to ease the
shift.

Furthermore, TABLET is able to generate blocks on the basis
of a given BNF of the text-based language to be shifted. This
feature makes it easier for the learner to be aware of the syntax of
the target language, and at the same time, makes TABLET general
enough to cope with a variety of text-based languages.

This paper describes the design of TABLET, an overview
of learning programming with TABLET, the implementation of
TABLET, and the evaluation of TABLET through experiments
with testee students.

This paper is organized as follows. Section 2 describes the de-
sign of TABLET. Section 3 gives an overview of TABLET with
concrete examples of its use. Section 4 describes the implemen-
tation of TABLET. Section 5 describes experiments to evaluate
TABLET and obtained results. Section 6 describes related work,
and Section 7 concludes the paper.

2. Design of TABLET

This section describes the details of the TABLET design.
In designing TABLET, we considered that the major barrier that

hinders the learner from shifting from a block-based language to
a text-based languages lies in the difficulty in the awareness of
the syntax structures of the text-based language. Therefore, we
designed TABLET as a type of structural editor, which makes the
learner aware of the syntax by enabling to create only programs
that follow the syntax. In addition, we designed TABLET to im-
mediately synchronize the block code and text code to support
the learner’s understanding of the syntax by making it easier to
grasp the correspondence between both types of code.

2.1 Syntax-Directed System
To overcome the barriers previously described, we designed

TABLET as a system that makes the learner aware of the syntax
of a target text-based language; it is a type of a syntax-directed

structural editor that functions on the basis of the syntax rules of
the language. Given the BNF of the language, TABLET generates
blocks for non-terminal symbols to make it possible to perform
derivations by block operations on the basis of the syntax rules.

In block-based languages such as Scratch, where notches and
bumps exist in the blocks, the learner creates a program so that
the unevennesses of blocks match. We were concerned that de-
signing the blocks of TABLET in such a way would diminish the
need for the learner to be aware of the syntax of the text-based
language.

Generating blocks from the BNF enables the code to be cre-
ated through derivation operations of blocks. Because derivation
operations need to follow syntax rules, the learner ultimately be-
comes aware of the syntax. Furthermore, for any given block, it
is possible to provide the text to replace from the keyboard. This
enables the range of the syntax to be adjusted appropriately in ac-
cordance with each learner’s achievement level of the shift to the
target text-based language.

2.2 Integration of Blocks and Texts
Another design that TABLET uses to aim at removing the

learner’s barrier is to integrate both blocks and texts. To this
end, TABLET provides both block operations and text operations,
enabling the learner to program using either blocks or texts, or
both. Furthermore, the results of operations on one side are im-
mediately reflected on the other side’s code, making the system
bidirectional. By combining blocks to build the entire structure of
the program and giving its details in texts, the learner can grasp
the correspondence between blocks and texts, and can also be-
come used to text-based programming. As an auxiliary feature,
TABLET is able to display the syntax tree of a program in progress
(or already created) to help the learner visually learn the syntax.

Forcing the learner to write a program directly by using only
texts from the beginning is a high barrier because in addition to
the transition from the mouse to the keyboard, it requires the com-
prehension of the text-based language’s syntax. Therefore, by us-
ing both block operations based on the mouse and text operations
based on the keyboard, we have achieved a system that learners
are familiar with and made it possible to narrow the range of the
syntax the learner pays attention to.

It was also considered to make TABLET offer only block op-
erations like Blockly. However, even though the system displays
the corresponding program text in a text-based language to re-
view, the learner would have no programming opportunity in the
text-based language. We believed that such a system would be
less effective for supporting the shift to text-based languages.

Thus, to make TABLET easy to use for the learner of block-
based languages and to let the learner be accustomed to text-based
languages, we believed that an integration of both blocks and
texts would be suitable. Since mouse and keyboard operations
can be performed simultaneously, it is expected that the learner
will have more opportunities to use the keyboard and, as a result,
the hurdle of the text input will become lower. If the notation of
the block code and that of the text code are far apart, it is dif-
ficult for the learner to grasp the correspondence between them.
Thus, the blocks are generated from the syntax of the text-based

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

language. This point will be discussed in Sections 3.2 and 3.3.

2.3 Generality of TABLET
TABLET focuses on the editor function for creating a program,

not running it. For this reason, TABLET does not adopt process-
ing, e.g., compiling a program, tailored to some specific text-
based language nor does it provide an integrated development
environment from program creation to execution.

We limited TABLET’s language-specific functions only to cre-
ating blocks and generating a parser from the BNF of the target
language. As will be described in Section 4.1, the BNF is pro-
vided in the form of SableCC’s syntactic descriptions [9], [10].
Although the syntax of the target language is thus limited to
LALR(1) used by SableCC, TABLET is not a language-specific
environment; it is general enough to be used for a variety of lan-
guages within the aforementioned range as long as the BNF is
prepared. This generality makes it possible, for example, to learn
a procedural language step by step, increasing the number of con-
trol structures, or to use multiple text-based languages in accor-
dance with the learning objectives and/or instructor’s policies.

There have been many studies on systems that are capa-
ble of automatically generating a structural editor from a given
language’s syntax, including the system by Arefi et al. [11],
ASF+SDF Meta-environment [12], LISA [13], MPS [14], and
the system by Ferreira [15]. However, to the best of our knowl-
edge, there is no system like TABLET that supports a variety of
LALR(1) languages, enables text input of arbitrary non-terminal
symbols, and synchronizes graphical and textual representations
of the program.

3. Overview of TABLET

This section describes the basic operations of TABLET. We
then give an overview of TABLET by using two concrete exam-
ples of simple text-based languages: a language based on four
arithmetic operations (hereafter, a four arithmetic language) and
a Pascal-like procedural language. As described in Section 2,
TABLET is not an integrated development environment that is ca-
pable of handling everything from program creation to its execu-
tion. TABLET is a system that uses blocks and texts together and
outputs the textual program of the target text-based language to
an external file.

3.1 Programming Style in TABLET
In TABLET, the learner creates a program by repeatedly replac-

ing non-terminal symbols (including identifier name, constant lit-
eral, and other symbols usually treated as lexical tokens) with
more concrete symbols on the basis of the BNF syntax rules for
the target text-based language.

Blocks in TABLET are objects for non-terminal and terminal
symbols displayed in the Blocks List (Section 3.2.1) and the
Block Area (Section 3.2.2) on the screen. Only blocks for non-
terminal symbols are targets of replacement. Blocks for non-
terminal symbols other than those treated as tokens can be re-
placed by block operations with the mouse (Section 3.3.1) or by
text operations in Text Area (Section 3.2.3) with the keyboard
(Section 3.3.2) that directly enters text matching the syntax of

Fig. 1 Screen of TABLET.

the non-terminal symbol. Replacement by a block operation is
equivalent to performing a derivation from the left-hand side to
the right-hand side of the syntax rule with respect to the non-
terminal symbol to be replaced. In addition, non-terminal sym-
bols for tokens can only be replaced by providing text from the
keyboard. TABLET displays blocks in colors so that the learner
can grasp at a glance what operations are possible for them. An
explanation is given in Section 3.3.3. In the examples shown in
Sections 3.4 and 3.5, each block is enclosed in a rectangle frame
and a symbol sequence in Text Area is bracketed by 〈〈 〉〉.

Blocks are named after the BNF description of the syntax
rules. In contrast, many existing block-based languages repre-
sent blocks in a natural language; a learner familiar with exist-
ing block-based languages may find it difficult to read TABLET’s
block code. TABLET compensates for this shortcoming by dis-
playing a natural language explanation of the target block in
Text Log (Section 3.2.5) or pop-up window, as described in Sec-
tion 3.3.4.

3.2 Screen of TABLET
Figure 1 shows the screen of TABLET. We describe each com-

ponent of the screen.
3.2.1 Blocks List

The large area on the left shows Blocks List, a list of blocks,
each of which corresponds to a non-terminal symbol except to-
kens, in the syntax rules of the target text-based language. A
block can be selected by clicking on it with the mouse; the se-
lected block is indicated by red text. The small area on the right
of Blocks List displays a list of block sequences, or Block Se-
quences List, each of which can replace the block selected from
Blocks List. Each block sequence corresponds to each of the
right-hand side of the syntax rule of the selected block.
3.2.2 Block Area

This is the area where a program is created by block operations.
In this area, the mouse is used. A block operation performed in
Block Area is immediately reflected in the program displayed in
Text Area, which is described in the following.
3.2.3 Text Area

This is the area where a program is created as texts. In this
area, the keyboard is used to create the program. The content of

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

the program displayed in Text Area is essentially the same as that
displayed in Block Area, except that the former only shows the
contents of symbols that are not composed of blocks, whereas the
latter consists of blocks. The results of code creation operations
in Text Area are immediately reflected in Block Area.
3.2.4 Function Buttons

A block in Block Area can be selected by clicking it with the
mouse.
Up Derived blocks containing the selected block are replaced

with the pre-derived block, i.e., the block on the left-hand
side of the syntax rule. If no pre-derived block exists, noth-
ing happens.

Down The selected block is replaced with the derived blocks.
If no derived blocks exist, nothing happens.

Tree Display The created program is displayed in the lower
left corner of the block area in the form of a tree structure.
Selecting it again hides the tree.

File Output The entire program is saved to the specified file.
Code Copy The entire program is copied to the clipboard.
3.2.5 Text Log

This is the area where the explanations of syntax elements and
error messages signaled by the parser are displayed.

3.3 System Operations
In Block Area on the left-side of the TABLET screen, a program

is created by block operations, and in Text Area on the right-side,
it is created by text operations. Both contents are synchronized in
real time, i.e., changes made in one area are immediately reflected
in the other.

In Block Area, each block represents a symbol in the syntax
rules of the target text-based language. For terminal symbols and
non-terminal symbols for tokens that have already been entered,
their contents appear as text directly in the blocks with a color-
less background. When TABLET is started, the initial block code
consists of the block for the start symbol.
3.3.1 Dragging and Dropping Blocks

The derivation operation from the left-hand side to the right-
hand side of a syntax rule is performed by dragging and dropping
blocks. Selecting a block in the Blocks List displays a Block Se-
quences List corresponding to the right-hand side of the syntax
rule for the non-terminal symbol of the selected block. One of
the block sequences can be selected and dragged with the mouse.
Dropping it onto the block for the non-terminal symbol (in the
block code) corresponding to the left-hand side of the syntax rule
causes the block to be replaced with the block sequence. Such
a drag-and-drop operation replaces a block in the block code.
When a replacement is done, Text Area updates its contents at
the same time.
3.3.2 Inputting Texts

Text Area displays the symbols that are the result of block op-
erations. Editing by text input can be done by selecting one of
the non-terminal symbols to be replaced in Text Area and typing
its content from the keyboard. After entering the text, pressing
the “Enter” key completes the replacement as long as the input is
syntactically correct for the symbol. If the input contains a syntax
error, a message is displayed in Text Log indicating that an error

has occurred and no replacement is made. When edits are made
in the text, they are reflected synchronously in Block Area.
3.3.3 Highlighting Symbols

Symbols that can be replaced by drag-and-drop operations or
by text inputs are indicated by light blue blocks. However, sym-
bols that cannot be further replaced by drag-and-drop operations
and can be replaced only by text operations are shown in blue.
Examples of such symbols are identifier names and constant lit-
erals, which are usually treated as tokens.

A target block of an operation, such as a block stacked with a
dragged symbol sequence or a block to be replaced by keyboard
input, is indicated by red text. While a replacement text is being
entered from the keyboard, the incomplete text string is displayed
in red on Text Area. Edited blocks including those for terminal
symbols that cannot be further replaced are displayed with a col-
orless background.
3.3.4 Explanation of Symbol

Hovering the mouse cursor over a block on Block Area dis-
plays a pop-up with a description of the symbol for the block. In
Text Area, when a symbol is selected by a mouse click, a descrip-
tion of the symbol and concrete examples are displayed in Text
Log. These explanations help the learner understand the general
meaning of a symbol.
3.3.5 Undo and Redo of Block Operations

After a replace operation by a drag-and-drop, the replacement
can be undone and the original block can be restored by click-
ing on the replaced block (or one of the blocks if the replacement
was made to a block sequence) with the mouse and then clicking
on the “Up” function button. To restore the replacement again,
the “Down” function button is clicked after selecting the block
before replacement. “Up” and “Down” correspond to undo and
redo, respectively.
3.3.6 Tree View of Blocks

By selecting the “Tree Display” function button, the block code
can be displayed in the lower left corner of Block Area in the
form of a tree structure. Selecting it again hides it. The high-
lighted symbol is placed at the center, and an upper and lower
level are displayed; the other levels are omitted and displayed as
“. . .”. This function helps the learner visually grasp the structure
of the code being created.
3.3.7 Temporary Saving of Code Fragments

If there is a code fragment in the already-created block code
that the learner wants to temporarily save, the learner can select
it with the mouse, drag it, and drop it on the “Temporary Space”
in the lower left of Block Area. Multiple code fragments can be
saved, and they are displayed in the block list by selecting the
Temporary Space. By selecting and dragging one of the code
fragments displayed in the block list, and then dropping it onto
the block of a symbol that the derivation is applied to in the block
code, the learner can replace the symbol with the stored code frag-
ment.
3.3.8 Switching Display Language

By selecting the “Language” menu in the upper left corner, a
list of natural languages supported by TABLET is displayed. By
selecting one of them, the language displayed on the buttons, Text
Log, and pop-ups switches to the selected language. TABLET cur-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

rently supports Japanese and English, and the default is Japanese.
All screen snapshots in the figures in this paper were taken when
English was selected.

3.4 Example: Four Arithmetic Language
This section creates a program “a = 2 * 3” in a simple four

arithmetic language. Figure 2 shows its syntax in the BNF.
The startup screen of TABLET for this language is shown in

Fig. 3 (a). From here, the process for creating the program is
shown from Fig. 3 (b) to Fig. 3 (k), and the completed program
is shown in Fig. 3 (l).

Blocks List is displayed on the left end of Block Area, and the
block stat corresponding to the starting non-terminal symbol
〈stat〉 is displayed in the center as the initial block code. The sym-
bol 〈〈stat〉〉 is also displayed in Text Area. Each block in Blocks

Fig. 2 Syntax of four arithmetic language.

Fig. 3 Creating four arithmetic language program.

List corresponds to a non-terminal symbol that is not treated as a
token. If stat is selected from Blocks List, a Block Sequences
List in which each block sequence corresponds to symbols deriv-
able from 〈stat〉, is displayed. In this case, since only a single
symbol sequence “〈ident〉 = 〈expr〉 ;” exists on the right-hand
side of the syntax rule of 〈stat〉, only this is displayed. By drag-
ging ident = expr ; using the mouse and dropping it on
stat in the block code (Fig. 3 (b)), we can replace stat in the
block code with ident = expr ; . In Text Area, 〈〈stat〉〉 is also
replaced with 〈〈ident = expr ;〉〉 at the same time (Fig. 3 (c)).
If we perform similar operations on expr (Fig. 3 (d)), term
(Fig. 3 (e)), and factor (Fig. 3 (f)), we can obtain the block code
shown in Fig. 3 (g). In these operations, since every expr , term ,
and factor has multiple choices on the right-hand side of its
syntax rule, multiple block sequences are displayed; we select
an appropriate one among them, and perform the drag-and-drop
operation.

Next, we select 〈〈ident〉〉 on Text Area by clicking the mouse
on it. Then, its corresponding block ident on Block Area turns
to red (Fig. 3 (h)). We then enter “a” in Text Area and press the
“Enter” key; both contents in the block and text code are updated
synchronously to “a,” and the block turns from blue to color-
less (Fig. 3 (i)). We perform a similar text operation to symbol

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 4 Change of four arithmetic language program.

〈〈iconst〉〉 and enter “3” (Fig. 3 (j)). Though term can be de-
rived by block operations, it is also possible to enter the content
to replace the symbol by a text operation. In Fig. 3 (k), 〈〈term〉〉 is
replaced by directly entering “2” from the keyboard.

Since all blocks in Fig. 3 (l) are colorless, we can see that the
program creation has been completed.

It is possible to undo the derivation just made and return to
the left-hand side of the syntax rule applied. For example, con-
sider the case where we want to change the right operand “3”
of 〈〈*〉〉 in Fig. 3 (l) to “(2 + 3).” Figure 4 shows this changing
process. First, we select the block 3 and then click the “Up”
function button. Then the selected block 3 is replaced with the
block iconst , which was the one before derivation. Similarly,
by clicking “Up,” the block iconst is replaced with the block
factor before derivation (Fig. 4 (a)). After that, we replace
factor with (expr) (Fig. 4 (b)), and then enter “2 + 3”
for 〈〈expr〉〉 in Text Area. Now we have completed the change
(Fig. 4 (c)).

Once program creation has been completed, it is possible to
save the program to an external file by pressing the “File Output”
function button. It is also possible to copy the entire program to
the clipboard by pressing the “Code Copy” button.

3.5 Example: Tiny µPlan
Tiny µPlan is a simple programming language based on Micro

Plan [16], a small Pascal-like language developed on the 8080
series microcomputers in 1977. Figure 5 shows the syntax defi-
nition of Tiny µPlan in BNF.

Here, we show the steps to create the following program for
Tiny µPlan.

var x ; // variable declaration

begin

x = getd() ; // input

putd(x + 5) // output

end.

This program reads the value of variable x and outputs the re-
sult of “x + 5.” It first declares the variable and describes its pro-
cessing between begin and end, in which “x = getd()” repre-
sents the input for variable x and “putd(x + 5)” represents the
output. It uses “;” between statements and ends with “.” after
end.

The system startup screen is shown in Fig. 6 (a). From here,
the process for creating the program is shown from Fig. 6 (b) to
Fig. 6 (k), and the completed program is shown in Fig. 6 (l).

First, selecting program in Blocks List displays a Block Se-

Fig. 5 Syntax of Tiny µPlan.

quences List that can be replaced. By dragging the sequence
gdecl noemptystmt . out of the displayed sequences and then
dropping it onto the block program in Block Area, we can re-
place program with gdecl noemptystmt . (Fig. 6 (b)). At
the same time, the symbol 〈〈program〉〉 in Text Area is replaced
with 〈〈gdecl noemptystmt .〉〉. Doing similar operations on
gdecl (Fig. 6 (c)) and variables (Fig. 6 (d)) leads to a block
code presented in Fig. 6 (e), in which var , ; , and . correspond
to terminal symbols. Since further replacements by block and
text operations are impossible for terminal symbols, they are dis-
played colorless. ident is displayed in blue, which means that
it cannot be replaced by a block operation.

Next, by clicking the symbol 〈〈ident〉〉 on Text Area, the sym-
bol is selected and the corresponding block on Block Area turns
to red. Then, by typing “x” in Text Area, the code contents of
both the block code and text code are synchronously updated.
After that, by pressing the “Enter” key, the content of the input is

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 6 Creating Tiny µPlan program.

confirmed. This input follows the syntax, so the code replacement
for 〈〈ident〉〉 is completed (Fig. 6 (f)).

Similar to the case of editing variable declarations, we replace
noemptystmt with compoundstmt and compoundstmt with
begin stmts end . Here, stmts represents a sequence of
statements. We replace it with stmt ; stmts to cut out a state-
ment (Fig. 6 (g)). It is necessary to generate an assignment state-
ment that assigns a value to variable x; we replace stmt with, via
noemptystmt and assignstmt , ident = expr (Fig. 6 (h)).
Here ident corresponds to variable x. Thus, we enter “x” for
〈〈ident〉〉 from the keyboard in Text Area (Fig. 6 (i)). expr cor-

responds to an expression for reading a value; we replace it with,
via simpleexpr , term , factor , and getdexpr , getd ()
by repeating drag-and-drop operations in Block Area. We can
also enter “getd()” directly for 〈〈expr〉〉 in Text Area without
using drag-and-drop operations (Fig. 6 (j)).

The only remaining code is the part that outputs “x + 5.”
To do so, we first replace stmts with stmt , and then fur-
ther replace it with putd (expr) via noemptystmt and
putdstmt (Fig. 6 (k)). Since expr is the output content, we
replace it via simpleexpr with simpleexpr addop term .
Then we perform appropriate block and text operations, replac-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

ing simpleexpr with x , addop with + , and term with 5 . We
can also do this by typing “x + 5” for 〈〈expr〉〉, as in the previous
example (Fig. 6 (l)).

The program has been now complete because all the blocks are
colorless, which means that they have been edited. The entire
code can be saved to a specified file in the same way as in the
four arithmetic language example.

4. Implementation

This section describes the overall structure of TABLET and im-
plementation details.

4.1 Overall Structure of TABLET
By letting L be a target text-based language, Fig. 7 presents the

overall structure of TABLET. We used Java as the implementa-
tion language. In this figure, yellow-lined parts represent the pro-
grams and files developed in this research, and blue-lined parts
indicate existing programs and automatically-generated files by,
e.g., a compiler.

The instructor who uses TABLET prepares a BNF for the
target language L in accordance with the description rules of
SableCC [9], [10]. Since SableCC adopts LALR(1), L’s grammar
is subject to this restriction. However, we accepted this restric-
tion because L is, as discussed in Section 1, supposed to be a less
complex language as a destination of the shift from block-based
languages. An L’s parser can be obtained by giving this BNF to
SableCC. In addition, the BNF of L is passed through the syntac-
tic elements retrieval program developed in this research to create
syntactic elements data of L handled by TABLET. These are com-
bined with Java programs for the basic structures of TABLET,
such as text and block operation parts, to construct TABLET spe-
cialized to L. If the target text-based language is another one L′,
we can obtain TABLET for L′. The learner makes a program us-
ing TABLET and saves the completed program to an external text
file.

4.2 Making Code by Block and Text Operations
The code in Block Area should always be a sequence of sym-

bols in accordance with the BNF. This is because if blocks can be
freely inserted into the code, the code might contain syntax errors.
Thus, we designed TABLET so that blocks taken from the Block
Sequences List cannot be inserted freely into the code; the only
way to create code in Block Area is, on the basis of the derivation,
by dragging a block sequence from the Block Sequences List and

Fig. 7 Overall structure of TABLET.

dropping it on a block of the same syntax element to replace in
the existing code. A textual code fragment is given by select-
ing a symbol to be replaced by text input in Text Area, and then
providing input for it from the keyboard.

The code that has been created or in the process of being cre-
ated by the block operations is kept as a concrete syntax tree in-
side the TABLET system. The concrete syntax tree grows down-
wards by the learner’s derivation operations. The “Undo” opera-
tion described in Section 3.3.5, which cancels the derivation and
goes back to the left-hand side of the syntax rule just applied, is
implemented by going up the syntax tree to the root direction.

To input textual code in Text Area, the learner selects the target
symbol on Text Area and enters the text to be replaced using the
keyboard. After entering text, the learner’s pressing the “Enter”
key causes the parser generated by SableCC to parse the input. If
the parsing is successful, the input is confirmed and the replaced
symbol is updated to the input inside the system. If the input
violates the syntax rules, the parsing will fail. In this case, an
error message is displayed in Text Log to inform the learner, and
symbols on the text and block areas are not updated because the
input is not confirmed. Unfinished input is displayed in red in
Text Area. If the target for the current operation moves to another
element, the pending input reverts to the content before editing.

Syntax elements that can be entered in text are not only lexical
tokens but also arbitrary non-terminal symbols. The code frag-
ment to be replaced with this non-terminal symbol can be given
from the keyboard. This enables the learner to make programs
with text input in accordance with the learner’s achievement level
of programming.

4.3 Additional Information by Comments
The BNF for TABLET includes additional information, such as

amounts of indentation when displaying code in Text Area and
texts for pop-up explanations of symbols, in the form of SableCC
comments. For example, consider the SableCC’s BNF in Fig. 8,
which is the definition of 〈compoundstmt〉 of Tiny µPlan shown
in Fig. 5.

A comment in the form of “/* x:y */” between elements in
the right-hand side of the syntax rule indicates the information for
an indented display of the code. Here, x is the line break priority,
for which the smaller the value, the higher the priority, and y is
the amount of indentation. When the number of blocks exceeds
a predetermined number in the horizontal direction, line breaks
are performed at high priority locations. Priority 0 means that
line breaks are always to be performed regardless of the number
of blocks. When a line break is performed, the y at this position
is used for the number of spaces inserted for indentation. If y

Fig. 8 Syntax rule with additional information.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

is a negative value, the amount of indentation is reduced by y. In
the example of Fig. 8, “begin /* 0:2 */ stmts /* 0:-2 */
end” for compoundstmt represents the sequence “begin stmts
end,” which specifies that line breaks are definitely required both
between begin and stmts, and between stmts and end. This
also specifies that stmts is indented by two spaces, and begin
and end are not indented.

A comment surrounded by “/* replace: {” and “} */” is
the “replacement text” for the symbol, which are used in pars-
ing a half-finished code. When parsing, it is necessary to give a
complete code without any uninstantiated non-terminal symbols
to the parser. Thus, to judge whether or not a half-finished code
that contains such non-terminal symbols is syntactically correct
by the parser, it is necessary to replace every non-terminal sym-
bol left with a concrete text that is correct from the viewpoint
of the parser. Thus, TABLET passes the code after replacing
every non-terminal symbol with its corresponding replacement
text specified in the comment so as not to induce a parser er-
ror. In this example, if the code contains uninstantiated symbol
compoundstmt, TABLET replaces it with “begin a = 1 end”
and invokes the parser. Note that it is sufficient that a replace-
ment text is syntactically correct; it is not necessary to consider
its meaning.

A comment surrounded by “/* hint:” and “*/” is the “pop-
up information” for the syntax element, which pops up and is
displayed when the mouse hovers over the symbol in the block
code. The pop-up information presents a simple explanation of
the symbol to the learner.

A comment surrounded by “/* example:” and “*/” is the ex-
planation with a concrete example for the syntax element. These
are displayed in Text Log when the symbol of the syntax element
is selected in Text Area.

For both the pop-up information and the explanation with a
concrete example, Japanese and English indicate the natural
languages supported by TABLET, and the following content
enclosed in double quotations is displayed in each natural lan-
guage. In Fig. 8, the pop-up information and the explanation with
a concrete example in English are “compound statement” and
“Symbol for compound statement. Example: begin

x = 10; y = 100 end,” respectively.
As previously described, TABLET requires additional informa-

tion about blocks to be provided as annotations in the syntax rules
of SableCC. This can be a burden for those who write the syntax
rules of SableCC. Reducing this burden is left for our future work.

5. Experiments for Evaluation

This section describes the details and obtained results of evalu-
ation experiments of TABLET with testee students. Experiments
were conducted when the following two features, “temporary sav-
ing of code fragments” (Section 3.3.7) and “switching display
language” (Section 3.3.8), were not yet implemented. We used
Tiny µPlan described in Section 3.5 for the target text-based lan-
guage because it was totally new for the testee students.

5.1 Purpose of Experiments
The purpose of the experiments was to investigate the usability

Table 1 Testee’s programming experiences.

No. Text-based language Block-based language Others
Name Length Name Length

1 C 2 yrs
C++ 2 yrs
Java 6 mths
Lisp 6 mths

2 C# 2 yrs *1
C 1 yr

3 Python 2 yrs Scratch 1 yr
C 1 yr
Ruby 1 yr

4 C 2 yrs *2
C# 1 yr
C++ 6 mths
Ruby 6 mths

5 C# 2 yrs Scratch 1 mth
C 1 yr
C++ 3 mths
Ruby 3 mths

6 C 1 yr

7 C 1 yr
Ruby 6 mths

8 C 7 yrs Micro:bit 1 mth *3
JavaScript 3 yrs
C++ 4 yrs

*1: Game programming by Unity.
*2: Coding while reading programming books.
*3: Creating plug-ins.

of TABLET and the learners’ comprehension of the target text-
based language. Through these experiments, we performed ob-
jective evaluations of TABLET.

5.2 Testees
Testees were eight second-year undergraduate students in the

authors’ affiliated university, who attended the lecture entitled
“Introduction to Programming” held in the first semester of
FY2021. This lecture was an introductory programming course
for beginners by using the C programming language.

Since compulsory programming education in the elementary
school started from 2020 in Japan, it was difficult to find begin-
ner students who had learned block-based languages. Thus, the
testee students previously described were appointed in the exper-
iments.

We assigned unique numbers for all testees and used those
numbers to identify individual students without using their real
names.

Table 1 shows the eight students’ programming experiences.
With block-based languages, the maximum experience was one
year, and five students had no experience. In contrast, students
had at least one year of experience with text-based languages.
However, all students had no experiences with Tiny µPlan at all.

5.3 Methods of Experiments
We conducted the experiments remotely by using Zoom, with

each student at a location with a good network environment. The
experiments consisted of three sessions, each of which took about
90 minutes. The experiments were scheduled at each student’s
convenience. The contents of each session were as follows.
Session 1 Explanations of TABLET and Tiny µPlan, and pro-

gramming with simple inputs and outputs.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Session 2 Programming with control structures (if and while
statements).

Session 3 Creation of rather complex programs.
At the beginning of each session, the first author of this paper

gave an oral explanation on the basis of handouts given. The tes-
tee students then created their assignment programs on TABLET

and submitted their programs. When submitting a program, each
student ran the program through an execution form on a dedicated
Web page to check if the result was correct. The student filled the
form with the program code and, if any, the input given from the
standard input. After submitting the program, the student were
asked to answer a questionnaire.

All executions of submitted programs were recorded on the
server. In addition to information such as the submission status
and the time taken to create the program, information from the
questionnaire was used in the evaluation of TABLET.

The assignment programs in each session were as follows.
Compared with the assignment programs in the first two sessions,
those in Session 3 were longer and more complex.
Session 1 (Input and output)
• A program that outputs the string “Hello World.”
• A program that reads two integers x and y, and outputs the

results of x + y, x − y, x × y, and x/y.
Session 2 (Control structure)
• A program that reads an integer x and outputs “Positive”

if positive, “Negative” if negative, or “Zero” if zero.
• A program that reads two positive integers x and y, and out-

puts xy.
Session 3 (Summary)
• A program that reads three integers and outputs their median.
• A program that reads two integers and outputs their greatest

common divisor.
• A program that reads an integer and outputs its prime factor-

ization.
The questionnaire asked the following questions about

TABLET on a scale out of five.
• Ease of creating programs by using block operations.
• Ease of creating programs by using text operations.
• Ease of creating programs by using both block and text op-

erations.
• Ratio of block and text operations used.
• Ease of understanding the correspondence between block

and text code.
• Comprehension level of the syntax of the target text-based

language, Tiny µPlan.

5.4 Experimental Results
5.4.1 Assignments

In both Sessions 1 and 2, no student failed to make programs
for the assignment problems. In Session 3, however, two students
exceeded the time limit during the third problem.

When executing the submitted program, there were no cases
in which any syntax error occurred. We believe that this is be-
cause, in the first place, TABLET creates programs on the basis of
the derivation operations of blocks; it is essentially impossible to
create programs that are against the syntax of the text-based lan-

Fig. 9 Ease of block operations.

Fig. 10 Ease of text operations.

guage. Two other possible reasons are that the block color made it
easy for the student to identify unedited elements, and that block
operations automatically supply terminal symbols such as semi-
colon, which are often forgotten in text-based programming.
5.4.2 Questionnaire Results

Figure 9 shows the ease of creating programs by using block
operations. The percentage of “Good” or “Very good” in Session
1 was smaller than those in Sessions 2 and 3. This is presumably
because most of the students had no programming experience in
block-based languages, and were therefore bewildered by their
first use of a block-based language. In addition, it might be dif-
ficult to understand the meanings of blocks at a glance because
they were named after the syntax rules.

In Session 2, six students selected “Good,” which increased
compared with Session 1. We believe this is due to the fact that
the students became accustomed to the block operations through
Sessions 1 and 2 and were able to grasp the meanings of blocks
through Text Log and pop-up descriptions.

However, the percentages of “Good” or “Very good” decreased
in Session 3 compared with Session 2. Two reasons are consid-
ered for this. First, programs in Session 3 were more complex
and longer than those in Sessions 1 and 2. Second, TABLET at
the time of the experiments was not equipped with the feature of
temporarily savings code fragments; to insert a new code frag-
ment in the middle of the already-created program, it was neces-
sary to go up to the inserting position, insert the code fragment,
and then create the same code as before from the first.

Figure 10 shows the ease of creating programs by using text
operations. Seven students chose “Good” or “Very good” in Ses-
sion 1, presumably because all students had experiences of text-
based languages. Despite this, the number of students who se-
lected “Good” or “Very good” in Sessions 2 and 3 decreased a
little compared with Session 1. This was the opposite result of
Fig. 9; this might be due to the fact that the students began to
become accustomed to block operations and felt that block oper-
ations were easier than text operations.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

Fig. 11 Ease of block and text operations.

Fig. 12 Ratio of block and text operations.

Fig. 13 Ease of understanding the correspondence.

Figure 11 shows the ease of creating programs by using both
block and text operations. The number of students who answered
“Very good” increased in Session 3. This is presumably because
students became familiar with the operations in TABLET through
Sessions 1 and 2, and, as a result, code fragments that should be
created with block operations and those that should be created
with text operations became clearer.

Figure 12 shows the ratios of block operations and text op-
erations used. We can see that more block operations than text
operations were used in Sessions 1 and 2. This is presumably be-
cause programs were short and simple, so block operations were
less complicated with fewer operations. The percentage of block
operations decreased in Session 3. Since programs in Session 3
were more complex and longer, depending on too many block
operations might increase the amount of time and effort, and in-
duce misoperations; we believe that the number of cases in which
the testee students relied on text operations increased for these
reasons.

Figure 13 shows the ease of understanding the correspondence
between block and text code. The percentage of “Good” and
“Very good” monotonically increased from Session 1 to 3. From
these results, it can be considered that TABLET was effective
in facilitating the understanding of the correspondences between
block and text code.

Finally, Fig. 14 shows the comprehension level of the syntax of
Tiny µPlan. The responses “Good” and “Very good” accounted

Fig. 14 Comprehension level of the syntax.

for 100% for both Sessions 1 and 2. From this result, we believe
that TABLET helps the learner understand the syntax of the target
text-based language. This evaluation is also supported from the
fact that all students were able to create the assignment programs
in Sessions 1 and 2. In addition, from Fig. 13, the correspondence
between block and text code was presumably easier to grasp for
the testee students.

However, the percentage decreased in Session 3. This might be
because experimental time for using TABLET was short for sev-
eral testee students. In fact, two students were not able to finish
the assignment programs within the time limit.

6. Related Work

6.1 Structural Editors and their Generators
HASKEU [17] is a Haskell programming development envi-

ronment that supports both visual programming based on a struc-
tural editor and text-based programming. It is equipped with a
propagation mechanism of program changes bidirectionally to
maintain the consistency between them. Users can learn pro-
gramming quickly by using visual programming, and when they
become ready, they can move on to a more advanced level by
using the text-based programming. The target text-based lan-
guage of HASKEU is restricted to a functional language Haskell;
HASKEU does not support the generality like TABLET, which
can cope with many languages.

For systems that are capable of automatically generating struc-
tural editors from the syntax definitions of target languages, many
studies including the system by Arefi el al. [11], ASF+SDF Meta-
environment [12], LISA [13], and MPS [14], have been con-
ducted. Ferreira’s syntax-directed editor generator [15] is more
closely related to TABLET because it generates, given the syntax
definition, a structural editor that enables both syntax-directed
editing through visual operations and text-based editing. This
structural editor consists of two parts: a visual representation of
the program’s syntax tree and a textual representation of the pro-
gram. Syntax-directed editing is done by mouse operations on the
syntax tree. Text-based editing is done by replacing tokens such
as identifiers and numerical literals with their concrete contents.
When terminal symbols and/or tokens appear during the editing
process of the syntax tree, they also appear in the textual rep-
resentation. When the user enters their concrete contents in the
textual part from the keyboard, the other part reflects the content;
real-time synchronization similar to that of TABLET works. How-
ever, it is impossible to enter texts for non-terminal symbols in the
middle of the syntax tree, which is possible in TABLET. Thus, the
user cannot adjust the range of syntax elements for which text in-

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

puts are possible in accordance with the learning stage.

6.2 Block-oriented Systems
Scratch [1], [2], [3] is a language for creating programs by

snapping together blocks with various functions. It has been de-
signed, developed, and maintained by MIT Media Lab Lifelong
Kindergarten Group. Blocks have notches and bumps, and the
user creates a program by fitting desired blocks together. There
are no textual representation for a program; only a block repre-
sentation is displayed in the Scratch window. According to the
Scratch home page [1], Scratch is used in more than 200 coun-
tries and regions, and supports more than 70 languages.

As a practical example in elementary school education, Mori
et al. [18] used Scratch to teach a class of 38 students in the fourth
grade. The content of the class was designed to create program-
ming works. More than 80% of the children were able to work
on making programs, which included conditional branches and
so on. In the class, Scratch was highly rated in terms of chil-
dren’s interest in programming. This indicates that block-based
languages such as Scratch are expected to be very effective in el-
ementary school education, and many children are expected to
learn block-based languages in the near future in Japan. Target
users of TABLET are learners who have mastered programming
in block-based languages.

Blockly [4], [5] is a block-based language developed by
Google. A program created by using blocks can be textually dis-
played as a program in text-based languages such as JavaScript,
Python, etc. in real time. The character display on a block is based
on natural language, which is different from the code notation of
a text-based language. However, since every element of the block
and that of the text correspond to each other, it is easy for the user
to correlate the contents of the two.

Although Blockly can display block code in text-based lan-
guages, it is impossible to edit the textual code directly; only one-
way conversion from block to text is possible. The user can un-
derstand the correspondences between block code and text code,
but cannot give a textual program in terms of the syntax of a text-
based language.

From the viewpoint of the shift from a block-based language
to a text-based language, there might be an opinion that, a sys-
tem like Blockly that enebles only block-based programming and
presents textual code at the same time would suffice for a user to
grasp the correspondences between both code and then to shift to
text-based programming. However, we believe that such passive
learning, in which the user only reads the textual code presented
by the system, is insufficient to learn how to write programs in a
text-based language, even if the user can feel the flavor of text-
based programming. Thus, though partially, TABLET adopts the
user’s active text-based programming to provide the user with the
experience of writing textual code directly, and aims for a smooth
shift to a text-based language.

Matsumoto et al. proposed OCaml Blockly *4, a programming
environment of OCaml that enables intuitive programming by us-
ing blocks. OCaml Blockly was designed to let the user learn the

*4 http://pllab.is.ocha.ac.jp/˜asai/jpapers/ppl/matsumoto19.pdf
(in Japanese) (accessed 2022-06-07)

OCaml language specification through block-based programming
and then move to text-based programming. To this end, conver-
sion between block code and textual OCaml code was possible.

Conversions between block and text code are not done in real
time; the user has to click the “conversion button” every time con-
version is necessary. It is therefore rather difficult to know which
part of the block code corresponds to which part of the textual
code. This could be a potential problem of OCaml Blockly in the
shift to text-based programming.

6.3 Shift to Text-based Language Support
Playgram [19] is a programming learning tool developed by

Preferred Networks Inc. Starting with visual programming, it
supports step-by-step learning, i.e., typing, basic programming,
and textual coding in Python. By using 3D graphics, Playgram
aims to help the user acquire the ability to freely express them-
selves and recognize space while solving problems by making
full use of programming. As a mechanism for supporting the
user’s shift from a visual language to a text-based language, Play-
gram converts the textual program into a program in the visual
language and then executes the program so that their execution
results are always the same. In addition, in accordance with the
learning stage of each user, Japanese displays on blocks can be
replaced with Python-based displays. Different from TABLET,
Playgram does not provide support for various text-based lan-
guages.

7. Conclusion

In this paper, we proposed TABLET, a programming environ-
ment that supports the shift from a block-based language to a
text-based language for block-based language learners. We have
designed TABLET as a syntax-directed system that focuses on
making learners aware of the target text-based language’s syntax.
Concretely, TABLET aims to integrate both block-based program-
ming and text-based programming by adopting both block oper-
ations using a mouse and text operations using a keyboard. To
achieve generality for a variety of text-based languages, TABLET

is designed as a system that is capable of generating blocks on
the basis of a target text-based language’s BNF. Through evalu-
ation experiments with testee students, TABLET is shown to be
potentially useful in the learners’ shift from block to text-based
languages.

In the current TABLET, repetition of the same non-terminal
symbol must be recursively defined in the BNF, as for the 〈term〉
in Fig. 2. Extending TABLET to introduce repetition symbols like
extended BNF and to provide special operations for them is left
for our future work.

Another issue for future work is to conduct experiments with
novice programmers who have only learned block-based lan-
guages. Through these experiments, it is necessary to further in-
vestigate whether they can understand the syntax-directed deriva-
tion operations of blocks, which are different from those of ex-
isting block-based programming language, and whether they can
advance their understanding of the syntax of the target text-based
language.

c© 2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.30

References

[1] Scratch (online), available from 〈https://scratch.mit.edu/〉 (accessed
2022-05-02).

[2] Maloney, J.H., Resnick, M., Rusk, N., Silverman, B. and Eastmond,
E.: The Scratch Programming Language and Environment, ACM
Trans. Comput. Educ., Vol.10, No.4, pp.16:1–16:15 (2010).

[3] Armoni, M., Meerbaum-Salant, O. and Ben-Ari, M.: From Scratch
to “Real” Programming, ACM Trans. Comput. Educ., Vol.14, No.4,
pp.25:1–25:15 (2015).

[4] Blockly (online), available from 〈https://developers.google.com/
blockly/〉 (accessed 2022-05-02).

[5] Seraj, M., Katterfeldt, E., Bub, K., Autexier, S. and Drechsler, R.:
Scratch and Google Blockly: How Girls’ Programming Skills and At-
titudes are Influenced, Proc. 19th Koli Calling International Confer-
ence on Computing Education Research (Koli Calling 2019), pp.23:1–
23:10 (2019).

[6] Viscuit (online), available from 〈https://www.viscuit.com/〉 (accessed
2022-05-02).

[7] Harada, Y. and Potter, R.: Fuzzy Rewriting – Soft Program Semantics
for Children, Proc. 2003 IEEE Symposium on Human Centric Com-
puting Languages and Environments (HCC 2003), pp.39–46 (2003).

[8] Watanabe, T., Nakayama, Y., Harada, Y. and Kuno, Y.: Analyzing
Viscuit Programs Crafted by Kindergarten Children, Proc. 2020 ACM
Conference on International Computing Education Research (ICER
2020), pp.238–247 (2020).

[9] Gagnon, É.: SableCC, An Object-Oriented Compiler Framework,
School of Computer Science, McGill University (1998).

[10] SableCC (online), available from 〈https://sablecc.org/〉 (accessed
2022-05-02).

[11] Arefi, F., Hughes, C.E. and Workman, D.A.: Automatically Gen-
erating Visual Syntax-Directed Editors, Comm. ACM, Vol.33, No.3,
pp.349–360 (1990).

[12] van den Brand, M., van Deursen, A., Heering, J., de Jong, H.A., de
Jonge, M., Kuipers, T., Klint, P., Moonen, L., Olivier, P.A., Scheerder,
J., Vinju, J.J., Visser, E. and Visser, J.: The ASF+SDF Meta-
environment: A Component-Based Language Development Environ-
ment, Proc. 10th International Conference on Compiler Construction
(CC 2001), Lecture Notes in Computer Science 2027, pp.365–370
(2001).

[13] Henriques, P.R., Pereira, M.J.V., Mernik, M., Lenic, M., Gray, J. and
Wu, H.: Automatic Generation of Language-based Tools using the
LISA System, IEE Proc. Softw., Vol.152, No.2, pp.54–69 (2005).

[14] Voelter, M. and Pech, V.: Language Modularity with the MPS Lan-
guage Workbench, Proc. 34th International Conference on Software
Engineering (ICSE 2012), pp.1449–1450 (2012).

[15] Ferreira, J.M.S.: Syntax-Directed Editor Generator, University of
Minho (2017).

[16] Ishida, H.: Microcomputer Languages, Journal of Information Pro-
cessing Society of Japan, Vol.22, No.6, pp.501–504 (1981) (in
Japanese).

[17] Alam, A. and Bush, V.: HASKEU: An Editor to Support Visual and
Textual Programming in Tandem, Proc. 2016 SAI Computing Confer-
ence, pp.805–814 (2016).

[18] Mori, H., Sugisawa, M., Zhang, H. and Maesako, T.: Practical Study
on Scratch Programming Lessons for Elementary School Students,
Japan journal of educational technology, Vol.34, No.4, pp.387–394
(2011) (in Japanese).

[19] Playgram (online), available from 〈https://playgram.jp/〉 (accessed
2022-05-02).

Takumi Miyajima received his B.E. and
M.E. degrees from the University of
Electro-Communications in 2020 and
2022, respectively. He is currently work-
ing in PCI Solutions INC. His research in-
terests are visual programming languages
and systems, and systems software.

Hideya Iwasaki is a professor in the
School of Science and Technology at
Meiji University, Japan. Until the end of
March 2022, he had been a professor in
the Graduate School of Informatics and
Engineering at the University of Electro-
Communications. He has been a mem-
ber of the Science Council of Japan since

2011. He received an M.E. degree in 1985 and Dr.Eng. degree
in 1988 from the University of Tokyo. His research interests in-
cludes programming languages and systems, parallel program-
ming, systems software, and constructive algorithmics. He is a
member of the IPSJ and ACM.

Yasushi Kuno is a Professor Emeritus of
University of Tsukuba, Japan. He re-
ceived his B.S., M.S., and D.Sci. degrees
from Tokyo Institute of Technology in
1979, 1981, and 1986, respectively. He
was an Assistant Professor of Tokyo In-
stitute of Technology from 1984 to 1989,
a Lecturer, an Associate Professor, and a

Professor of University of Tsukuba from 1989 to 2016, and a Pro-
fessor of the University of Electro-Communications from 2016 to
2022.

c© 2022 Information Processing Society of Japan

